Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests
نویسندگان
چکیده
To explore the importance of soil microbial community composition on explaining the difference in heterotrophic soil respiration (R(h)) across forests, a field investigation was conducted on Rh and soil physiochemical and microbial properties in four subtropical forests in southern China. We observed that Rh differed significantly among forests, being 2.48 ± 0.23, 2.31 ± 0.21, 1.83 ± 0.08 and 1.56 ± 0.15 μmol m(-2) s(-1) in the climax evergreen broadleaf forest (BF), the mixed conifer and broadleaf forest (CF), the conifer plantation (CP), and the native broadleaved species plantation (BP), respectively. Both linear mixed effect model and variance decomposition analysis indicated that soil microbial community composition derived from phospholipid fatty acids (PLFAs) was not the first-order explanatory variable for the R(h) variance across the forests, with the explanatory power being 15.7%. Contrastingly, vegetational attributes such as root biomass (22.6%) and soil substrate availability (18.6%) were more important for explaining the observed R(h) variance. Our results therefore suggest that vegetation attributes and soil carbon pool size, rather than soil microbial community composition, should be preferentially considered to understand the spatial R(h) variance across the subtropical forests in southern China.
منابع مشابه
Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?
Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four...
متن کاملZonal Soil Type Determines Soil Microbial Responses to Maize Cropping and Fertilization
Soil types heavily influence ecological dynamics. It remains controversial to what extent soil types shape microbial responses to land management changes, largely due to lack of in-depth comparison across various soil types. Here, we collected samples from three major zonal soil types spanning from cold temperate to subtropical climate zones. We examined bacterial and fungal community structure...
متن کاملInvariant community structure of soil bacteria in subtropical coniferous and broadleaved forests.
Soil bacteria may be influenced by vegetation and play important roles in global carbon efflux and nutrient cycling under global changes. Coniferous and broadleaved forests are two phyletically distinct vegetation types. Soil microbial communities in these forests have been extensively investigated but few studies have presented comparable data regarding the characteristics of bacterial communi...
متن کاملDifferent soil respiration responses to litter manipulation in three subtropical successional forests
Aboveground litter inputs have been greatly altered by human disturbances and climate change, which have important effects on soil respiration. However, the knowledge of how soil respiration responds to altered litter inputs is limited in tropical and subtropical forests. We conducted an aboveground litterfall manipulation experiment in three successional forests in the subtropics to examine th...
متن کاملHeterotrophic respiration does not acclimate to continuous warming in a subtropical forest.
As heterotrophic respiration (R(H)) has great potential to increase atmospheric CO2 concentrations, it is important to understand warming effects on R(H) for a better prediction of carbon-climate feedbacks. However, it remains unclear how R(H) responds to warming in subtropical forests. Here, we carried out trenching alone and trenching with warming treatments to test the climate warming effect...
متن کامل